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Abstract

An analytical approach for the determination of the response of a single circular cylindrical pile subjected
to a lateral dynamic load is presented. The kinetic and the potential energies of the pile-foundation system
are minimized by variational principle to obtain the governing field equations of the pile-foundation system
along with the appropriate boundary conditions. A non-dimensional parameter y, associated with the
characteristics of the pile, the foundation and the loading is used to represent the elastic medium. This
parameter y can be determined by using an iterative procedure. The classical finite difference method is used
to solve the governing field equations of the pile-foundation system. The validation of the proposed model
is demonstrated by applying to several published field pile load tests. Parametric studies with regard to the
frequency response of the pile head and the resonant frequency of the pile-foundation system are presented.
© 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Lateral vibration of piles is an important consideration in the design of piled structures subject
to dynamic excitations due to earthquake, wind, operation of machines and waves in offshore
environments. In the past two decades, various models have been used to take the soil-pile
interaction in the dynamic response analysis of pile foundations. Among those, Winkler models
are the simplest and numerically most efficient ones. In Winkler models, the soil is viewed as
distributed springs and dashpots that are constant or frequency dependent or as lumped springs
concentrated at a finite number of nodes. The spring constants are obtained from analytical
considerations or from experimental data. The major advantages of this approach lies in its ability
to simulate nonlinearity, inhomogeneity, and hysteretic degradation of the soil surrounding the
pile by simply changing the spring and dashpot constants. The Matlock (or Penzien) model
(Matlock et al., 1978) and the Novak model (Novak, 1974) may be classified as the conventional
Winkler models often used in the dynamic response analysis of pile foundations, while the Nogami
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model (Nogami et al., 1988; 1991) is a Winkler model recently developed for the dynamic and
nonlinear response analysis.

Finite element analyses of piles have been carried out by Kuhlemeyer (1979) and Krishnan et
al. (1983) in which the piles are represented by axisymmetric elements and energy-absorbing
boundaries are used to represent the far field. Considering the obvious limitations of the finite
element method for modeling boundaries at infinity, these analyses represent considerable achieve-
ments in characterizing the dynamic behavior of piles.

Boundary element formulation has been used by Kaynia and Kausel (1982). Sen et al. (1985),
and Banerjee et al. (1987) for the dynamic analysis of piles. Boundary element method offer
advantages over other methods primarily because of its ability to take into account the three-
dimensional effects of soil continuity and boundaries at infinity. But the major problem is the
accuracy of the numerically constructed dynamic solutions since the convergence of the semi-
infinite integral is dependent on the frequency parameter.

In this paper, based on the analysis of elastic continuum, a two-parameter model for dynamic
analysis of laterally loaded piles is presented. A numerical approach based on the Vlasov method
is introduced for the dynamic analysis of soil-pile system. The Vlasov model has been used for the
static and dynamic analyses of plates on elastic foundations (Vlasov and Leontiev, 1966; Jones
and Xenophontos, 1977; Jones and Mazumdar, 1980; Scott, 1981; Sargand et al., 1987). Vallabhan
and Das (1988; 1991a;b) proposed a modified Vlasov model for the static analysis of beams on
elastic foundations. Sun (1994) used the Vlasov model for the static analysis of laterally loaded
piles. The basic ideas from Sun and Vallabhan and Das, are adopted in this paper. The proposed
method uses Hamilton’s principle to derive the governing equations of the pile and soil system. A
parameter (y) associated with the characteristics of the pile, the soil and the loading is used in this
model, and can be determined by using an iterative procedure. Finite difference method (FDM) is
used for solving the differential equations. The proposed model is verified against two static load
test piles and then applied to one dynamic test pile.

2. Basic equations

The inherent assumptions in the proposed model are:

(1) The pile is vertical, elastic, and circular in cross section.

(2) The pile is perfectly connected to the soil. There is no slippage or separation at the interface
of the pile and the surrounding soil.

(3) The soil is a semi-infinite, elastic, homogeneous, isotropic medium.

A typical circular pile of length L, radius R and flexibility £,/ is shown in Fig. 1. The surrounded
soil has Young’s modulus E, and Poisson’s ratio v,. For the soil, vertical displacement associated
with laterally loaded pile w,, is considered negligible and the horizontal displacements, u, and v,
are approximated by separable functions of the cylindrical coordinate r, 0 and z (Sun, 1994). That
is:

ug(r,0,z,t) = u(z, 1)¢(r) cos 0 (1a)
0g(r,0,2,1) = —u(z,t)¢p(r)sin0 (1b)
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Fig. 1. (a) Pile-soil system; (b) coordinate system and displacement components.

Wwe(r,0,z,1) =0 (lc)

where u(z, f) = lateral displacement of the pile; and ¢(r) = dimensionless function representing
the variation of the soil displacement in the r-direction.
The potential energy of the pile and soil system is
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Based on the assumption of displacements given in eqn (1) and using stress-strain relations, eqn
(2a) can be rewritten as:

I , (dDY’ du\*
U—2JVR JVO |:TC(/L+3G§)M <dr> +27'CG5<dZ> () :|rdrdz
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+2J0 Ep]p(df) dz+ ZJ TR GS(dZ) dz (2b)

L

The kinetic energy of the pile and soil system is
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Work of non-conservative force is
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Here ¢,(¢) and m(¢) are the lateral force and bending moment, respectively, acting on the pile at

the ground level z = 0.
Considering Hamilton’s principle

Jz(aT—awdHJzéWmdz —0

1 1

using the following notations:

m, =f r®* dr

R
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Collecting the coefficients of ou and d(du/dz) for 0 < z < L, we get the following eqns and boundary

conditions:
d*u d’u d’u
EIl — —2¢c +ku+m—=0 0<z<L
PP dz dz? de? ( )
where
2¢ = 2nGm,

k =n(A+3G,)m,

(7

(8a)
(8b)



Y.C. Das, S.M. Sargand | International Journal of Solids and Structures 36 (1999) 4975-4989

m = m,+2npm,
with boundary conditions:

du du
<Eplp(123—2cdz—q0>5l/l:0 (ZZO)
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d’u _/du
For L < z < o0, we have
d?u . _du 0 (L<z<o0)
co—— —ku—m,—— = <z<
z2 dr?
where

¢, = nR*G,+2nG.m,
m, = ms+2npm,
Boundary conditions at z = L and z — oo:

du
csgéu =0

Collecting the coefficients of d¢ for R < r < oo, we have
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The solution to eqn (13) is
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which satisfies the boundary conditions at r = Rand r —» o0: ¢(R) = 1 and ¢(o0) = 0. K,() denotes
the modified Bessel function of the second kind of order zero.

3. Equations and boundary conditions for steady-state harmonic loading

It is assumed that the pile is undergoing a steady-state harmonic motion. So let

qo(1) = Qo™ (16a)
my(t) = Mye™ (16b)
u(z, 1) = u,(2)e™ (0<z<L) (16¢)
u(z, 1) = u,(2)e” (L <z < o0) (16d)

where Q = the circular frequency; O, = the amplitude of the lateral load ¢(¢); M, = the amplitude
of the moment my(?); u,,(z) = the amplitude of pile displacement; and u,,(z) = the amplitude of
the soil column displacement below the pile toe.
Substitution of eqn (16) into eqn (7) gives
d* d?
EL S o0 d”;"’ + (k—mQ)u,, = 0 17)
z

pip
dz*

with boundary conditions at z = 0.

a3 d

E,l, d:‘;’p —2C% — 0, (18a)
dzupp

Eplp? +M, =0 (free-head) (18b)

zZ
d
o _ 0 (fixed head) (18¢)
dz

For clamped pile, boundary conditions at z = L are:

uy,, = 0 (clamped pile) (19a)
d
% —0 (clamped pile) (19b)

For floating pile, to get the boundary conditions at z = L, we have to solve eqn (10) at first.
Substitution of eqn (16) into eqn (10 gives

ps —OCZM =0 (20)
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. @
Solving the differential equation given in eqn (17), with the boundary conditions u,,(c0) = 0 and
Ups(L) = u,,(L), we get the following solution

Ups = Uy, (L)e "0 (22)
So the boundary conditions for floating pile at z = L are

d*u

—22 =0 (floating pile) (19)
dz?
d’ d
Eyl, = =26~ — [c (k= m,Q)uy, = 0 (floating pile). (15d)
dz3 dz

The parameters y can be expressed in terms of u,, as follows:

L/du, \? L
2|:GSJ < pp) dZ—i—pSQZJ ugpdz}—kN
o \ dz 0

2
Y
(R) = B (23)
(As+ 3GS)J uy, dz+D
0
where
QZ
N= (Gsoc—i— P 5 >ugp(L) (24a)
) +3G,
D= ( - >u;p (L) (24b)

After a careful examination of the equations and parameters, it can be seen that the solution of a
pile in the elastic media is controlled by the non-dimensional parameter y. This parameter depends
on the characteristics of the pile, the soil and the loading. The determination of this parameter is
discussed in the following.

4. Proposed methodology

A solution to the problem is sought by satisfying the governing differential equation (eqn 17)
subject to the boundary conditions specified by eqns (18) and (19). To obtain the solution for u,,
the value of the parameter y defined by eqn (23) is needed. Note that y depends on u,, and the
function of ¢(r) depends on y. The quantities m, and m,, which are required to obtain u,, are also
functions of y. Since we do not know the value of y a priori, an iterative procedure is required to
obtain its correct value. The iterative procedure of Vallabhan and Das (1988) is employed here.
The procedure is composed of the following steps.
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(1) Assuming y = 1.0;

(2) Calculate m, and m, from eqn (8);

(3) Calculate the displacement magnitude u,,, along the pile by solving eqn (19), with the boundary
conditions eqns (20)—(21). Finite difference method (FDM) (Desai and Christian, 1977) is
used here;

(4) Use the results of (3) and calculate the new value of y by using eqn (25);

(5) Use the new value of y and repeat steps 2—4. Iteration is continued until the difference between
the ith and (i+ 1)th value of y

1741 —7: < 0.001 (25)

Finally, the displacement magnitude of the pile u,, and the soil displacement in the r-direction,
¢(r), can be obtained.

A computer program was written using FORTRAN 77 on IBM PC. Using the program, it is
very easy to conduct the above iteration procedure.

5. Comparisons with field tests

To demonstrate the validity of the proposed model, the method is applied to calculate the
performance of field test piles.

5.1. Case 1: Static load test piles

Matlock (1970) reported a field pile test at the area of Austin Lake. The pile length and diameter
are respectively 12.8 and 32.4 cm. The pile stiffness is 3.132 x 10* kN m?. The average shear strength
is 0.308 MPa. According to Poulos and Davis (1980), the secant Young’s modulus E, = (15-95)c,,
with an average value of 40 ¢, is used. The theorectical and experimental results of the pile
displacement at the ground surface are shown in Fig. 2. It can be seen that the pile displacement
can be well calculated if the soil modulus is appropriately chosen in the range E, = (15-95)c,.
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Fig. 2. Pile displacement at ground surface (Matlock, 1970).
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Fig. 3. Pile displacement at ground surface (Reese et al. 1974).

Reese et al. (1974) reported a field pile test at the area of Manor, Texas. The pile length and
diameter are respectively 15.2 and 61.0 cm. The pile stiffness is 4.110 x 10° kN m?* The average
shear strength is 0.115 MPa. According to Poulos and Davis (1980), the soil modulus can be
chosen as 1.725-10.925 MPa, with an average value of 4.6 MPa. The theoretical and experimental
results of the pile displacement at the ground surface are shown in Fig. 3. It can also be seen that

the pile displacement can be well calculated if the soil modulus is appropriately chosen in the range
E, =(15-95)c,.

5.2. Case 2: dynamic load test piles

El-Marsafawi et al. (1992) reported horizontal vibration tests on a single pile. The tests were
conducted at the pile research site at the Institute of Engineering Mechanics, Harbin, China. The
cast-in-place reinforced concrete pile had a diameter of 0.32 and 7.5 m in length, connected by a
0.3-m-deep rigid reinforced concrete cap. The cap had a mass of 740 kg with its bottom surface
situated 0.1 m above the ground surface. Figure 4a shows the layout of the pile and the cap.
The pile properties were evaluated as: Young’s modulus = 1.96 x 10" N/m?, and the specific
weight = 2.45 x 10* N/m®. The soil at the site was a relatively homogenous sandy clay with yellow
and brown coloring. The measured in situ shear wave velocity and mass density profiles are shown
in Fig. 4b. The water table was 20 m below the ground surface. Poisson’s ratio was taken as 0.3.

An exciter with two counter-rotating eccentric masses was fixed in the cap and used to produce
horizontal harmonic excitation. The mass of the exciter was m. = 120 kg. The center of the cap-
exciter system was 0.1 m below the cap surface. The exciting force acted 0.2 m above the cap
surface in the Y-direction (Fig. 4a). The excitation forces is given by

qo (1) = (m.e)Q* cos Qt (26)
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Fig. 4. (a) Layout of single pile test; (b) soil profile at the test site.

The experimental horizontal responses are shown as discrete points in Fig. 5. The normalized
response amplitude is defined as

Ay <m>u @7)

mee

where m = the total mass of the cap-exciter system.

The comparisons of the theoretical and experimental results of the pile displacement at the
ground surface are shown in Fig. 5. A better prediction can be obtained when a reduced soil
modulus is used.

6. Parametric analysis
The parameters investigated in this study are L/R, E,/E,, py/p, and v. For the present study,

various parameters within a range of practical values are used to illustrate their influences on the
pile behavior.
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6.1. Frequency response of pile head

The frequency response of pile head to horizontal excitation for a pile with clamped tip at
different values of E,/E, are shown in Fig. 6. As expected, with the increase of E,/E,, the pile
displacement increases. It can also be seen that the resonant dimensionless frequency «a, increases
as E,/E; increases.
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6.2. Effects of various parameters on the pile behavior

The effects of slenderness ratio L/R on the resonant dimensionless frequency a, at different E,/E,
are shown in Fig. 7. When L/R is greater than 40, the resonant dimensionless frequency a, is the
same whether the pile tip is clamped or floating. It means that pile tip conditions have no effect on
the pile behavior when L/R is greater than 40. When L/R is smaller than 40, L/R has a great
influence on the resonant dimensionless frequency a,. For a pile with clamped tip, the resonant
dimensionless frequency a, decreases as L/R increases, the effect of L/R becoming more significant
as E,/E; increases. The resonant dimensionless frequency a, also increases as E,/E, increases. For
a pile with floating tip, the resonant dimensionless frequency a, increases as L/R increases, the
effect of L/R becoming more significant as E,/E decreases. The resonant dimensionless frequency
a, also increases as E,/E, decreases.

The effects of soil Poisson’s ratio v on the resonant dimensionless frequency a, with p/p, = 0.7
and E,/E; = 1000 are shown in Fig. 8. The resonant dimensionless frequency a, increases as soil
Poisson’s ratio v increases whether the pile tip is clamped or floating.

The effect of py/p, on the resonant dimensionless frequency a, with v = 0.3 and E,/E; = 1000
are shown in Fig. 9. The resonant dimensionless frequency a, increases as p,/p, increases whether
the pile tip is clamped or floating.

7. Summary and conclusions

An analytical approach for the determination of the response of a single cylindrical pile subjected
to lateral dynamic load is presented. The method uses variational principle to obtain the governing
differential equations of the soil and the pile system. A non-dimensional parameter y associated
with the characteristics of the pile, the soil and the loading is used to represent the elastic foundation.
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Fig. 8. Effect of soil Poisson’s ratio on resonant dimensionless frequency.

—_

The parameter y can be determined by using an iterative procedure. The classical finite difference
method is used to solve the differential equations. Analyses of two static field test piles show that
the pile displacement can be well calculated if the soil modulus is appropriately chosen in the range
E, =(15-95) ¢,. Analyses of one dynamic field test pile shows that a better prediction can be
obtained when a reduced soil modulus is used. However, the discrepancy noticed in the comparison
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Fig. 9. Effect of pile density on resonant dimensionless frequency.

between the analytical and experimental results is mainly due to the assumptions made in develop-

ing the analytical model.
The parametric studies with regard to frequency response of the pile head and the resonant

frequency of the pile-soil system show that:

(1) When L/R is greater than 40, the resonant dimensionless frequency a, is the same whether the
pile tip is clamped or floating.
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(2) When L/Ris smaller than 40, /R has a great influence on the resonant dimensionless frequency
a,. For a pile with clamped tip, the resonant dimensionless frequency a, decrease as L/R
increases, the effect of L/R becoming more significant as E,/E, increases. The resonant dimen-
sionless frequency a, also increases as E,/E, increases. For a pile floating tip, the resonant
dimensionless frequency a, increases as L/R increases, the effect of L/R becoming more
significant as E,/E decreases. The resonant dimensionless frequency a, also increases as E,/E;
decreases.

(3) The resonant dimensionless frequency «, increases as soil Poisson’s ratio v increases whether
the pile tip is clamped or floating.

(4) The resonant dimensionless frequency a, increases as p,/p, increases whether the pile tip is
clamped or floating.
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